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Controlling physical systems with symmetries
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Symmetry properties of the evolution equation and the state to be controlled are shown to determine the
basic features of the linear control of unstable orbits. In particular the selection of control parameters and their
minimal number are determined by the irreducible representations of the symmetry group of the linearization
about the orbit to be controlled. We use the general results to demonstrate the effect of symmetry on the control
of two sample physical systems: a coupled map lattice and a particle in a symmetric potential.
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I. INTRODUCTION ut= —Kxt 3

Despite the recent wave of interest towards controllingand one obtains the linearized evolution equation in the form
chaotic dynamic§1,2], an interesting and important question
of controlling systems with symmetries received surprisingly xF1=(A-BK)xX". (4)
little attention in the physics literature. The importance of ) - ] )
symmetries in controlling, for instance, spatiotemporal chaod he matrix A’=A—BK has stability properties different
is evident since the systems typically show rotational androm the stability properties of the matri&. This can be
translational symmetries. Although the presence of symmeeXploited to make the steady stafe (the matrix A—BK)
tries usually significantly simplifies the analysis of systemstable under control.
dynamics, it also makes control schemes more complicated The dynamical systert2) or the pair @,B) is said to be
due to the inherent degeneracies of the evolution operatorstabilizableif there exists a state feedba€® such that the
In fact, the presence of symmetries, explicit or implicit, System(4) is stable. Stabilizability is a property that often
makes a number of single-control-parameter methods faflepends sensitively on the values of the control parameters
[1,3], calling for multiparameter contr¢é—7]. p*.

In order to see how these restrictions arise, let us consider In the majority of practical situations it is preferable to
a general discrete-time systenfthe arguments for have an adaptive control that would stabilize a given steady
continuous-time systems are very simjijavhose evolution statez*(p*) for arbitrary values of the system parameters.

is described by the map: RNx RM— RN, This is especially important if one is to track the trajectory
Z* asp* changes or use the same control arrangement to
2T 1=F(Z,p), ) stabilize different steadyor even periodig states.

Such a control scheme is obtained if the more restrictive
where z is an N-dimensional state vector ang is an condition ofcontrollability is imposed on the matrices and

M-dimensional parameter vector. Linearizing about theB. The dynamical systert2) or the pair @,B) is said to be
steady-state solution of* =F(z*,p*) and denotingx'=Z! controllableif the eigenvalues of the matrik—BK can be

—Zz* andu'=p'—p*, we readily obtain freely assigned(with complex ones in conjugate pairs
which is equivalentsee Theorem 5.13 in RdB]) to requir-
X 1= Axt+ But, ) ing that:
where Aj; = JF(z*,p*)/ 9z, is the Jacobian of the transfor- rank C)=N, ®)

mation andB;; = dF;(z*,p*)/dp; is the control matrix.

If the steady state* is unstable, it can be stabilized by an
appropriate feedback through the time-dependent contr
perturbationu! if the matricesA andB satisfy certain condi-
tions. We will understand the design of the control scheme a In order to better understand the restrictions imposed by

an appropriate choice of the control matéix We will see the symmetry, it is beneficial to look at the controllability

below that the conditions affecting this choice can be eas”%:ondition written in the forn(5) from the geometrical point

obtained from the symmetry properties of the system and the, . : - 7
controlled state. of view assumingM =1 andB=Db. Suppose we let the sys-

tem evolve under control for steps from the initial state.
The final state will be given by

whereC=(B AB A?B --- AN"IB) is called thecontrolla-
ility matrix. Relation(5) was introduced into the physics
Iterature from linear systems theory by Romeisdsal. [1]
asa simple but practical test of the controllability.

Il. STABILIZABLE VS CONTROLLABLE SYSTEMS

7—1
Assuming that the feedback is linear in the deviation from Xt 7= AT+ 2 AT 1-mp,tem (6)
the steady statg*, we can write m=0
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The controllability in this context is equivalent to the vectors Decomposingl into a sum of irreducible representations
T' of the group G* with respective dimensionalities

ff=A""1""p, m=0,...7-1 (7  m,, r=1,...] we obtain
spanning the state space fer-N, so that any initial state _ _
can be mapped to any final state #rtime steps by an ap- T_% T, N_Z my (12

propriate choice of the “coordinatesi*™ of the difference
X T— ATX According to the standard group-theoretic analy9k the

If the matrix A is nondegeneratéhas a nondegenerate JacobianA will have eigenvalues., with multiplicities n,
spectrum, one can always find a vectbrsuch that the re- =m,, corresponding to the dimensions of the irreducible
sulting set(7) forms a basis. However, A is degenerate representation3" contained in the decomposition af. If
(which is a usual consequence of symmgttigere will exist  m,>1 for somer, the Jacobian becomes degenerate, which
an invariant subspade’ C RN, with the dimension diri(") causes certain control methods to faite, for example, Ref.
>1, where the dynamics of the system cannot be controlle@3]).
with just one control parametésee Ref[1] for an example Next we use the result of linear systems theory based on
of such a situation the Jordan decomposition of the Jacobian matrix

If the system dynamics i" happens to be stable, the L
system can still be stabilized similarly to the nondegenerate A
case, but we have to ensure controllability in case the dy- A2
namics in this subspace is unstable. This can be achieved by A=SAS 1= . , (13
increasing the number of control parametdts which ex- -
tends the set7), until it spans every unstable invariant sub- Al
space ofRN. This would lead one to assume thdt should
be defined by the dimension of the largest invariant subspacéhere the Jordan superblock
or equivalently, the highest degeneracy of the Jacobian ma- AT
trix A. We will see, however, that various kinds of degen-
eracy have a somewhat different effect on the controllability ; A"
of the system. Al= (14

ATSr
[ll. THE NUMBER AND SELECTION OF PARAMETERS

corresponding to the eigenvalue has dimensiom, and

Let us assume that the evolution equati@thpossesses a A
quatianp consists ofs, Jordan blocks

symmetry described by a symmetry gro@pi.e., the mag-

commutes with all group actions A,
F(9(2),p)=9g(F(zp)) Vgeg ® I N
. . . o A= . (15
or in other words, the functiok(z,p) is G equivariant. The
symmetry of the linearized equatig®) in the absence of 1N
control (u=0) is in general different frontalthough closely 1\
related t9 the symmetry of the full nonlinear equatidf).
We will call the respective symmetry gro@_ It generates Since the controllability is invariant with respect to coor-
the matrix representatiof in the state spaci": dinate transformationéTheorem 5.17 in Ref.8]), condition
(5) is satisfied for the pairA,B) if and only if it is satisfied
[9(¥)]i=[T(@)x]i=T(9)ijX; - (99 for the pair (A,B), whereB=SBis the transformed control
matrix.
Due to the symmetry, all matricés(g) commute with the If B is partitioned according to the block structure/of
Jacobian
A1 Arl pri
T(QA=AT(g) VgeG*. (10) B B !
A B2 A Br2 o b
G* depends on bott and the reference stat& or, to be B=| |, B'=|_ . BU= , (16
exact, its symmetry group, which we dendie : : ’
B! Brse B:]l _
h(z*)=z* VheH. (11 "

The symmetry of the evolution equation is reduced uponthe controllability condition for the pairA,B) is reduced to

linearization, if the reference state has low symmetry, andhe controllability conditions for each pair\(,B"), which,
then G* becomes one of the subgroups @fOn the other N turn, is satlsﬂec(Theorem 5.18'|n Ref8)) if and only if
hand,G* might be equal taG or even includeg as a sub- for eachr the set ofs, M-dimensional row vectors
group for highly symmetric reference states, with the appar- Arl 22 ~rs,

ent symmetry increased by linearization. by",by%, ... by 17)
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is linearly independent. This in turn can be achieved if and Y

only if M=s, for everyr. Hence the minimal number of

control parameters should equal the maximal number of Jor-

dan blocks contained in any one superblock

M hin=maxs; . (18

r

A= A (24)

N
generates the set of three linearly dependent veddrs

=b,f'=\b, andf?=\?b [compare to Eq(7)], that span the
one-dimensional subspace Bf for any choice ofb. As a

In general, the system under consideration is not Ham”'result, three linearly independent vectdrg b, ,bs are nec-

tonian and therefore its Jacobian mat#ixis not Hermitian
and hence nondiagonalizable. Therefore, we hayes,

essary to control the system.
On the contrary, the Jacobian

=m,. However, in the absence of accidental degeneracies

n,=s,=m, for everyr and the condition(17) is equivalent
to
rank B,)=m, . (19
The calculation of the transformati@can be avoided for
compact groups/* by using the projection operat®’ on
the subspace’C RN, which transforms according to thigh
irreducible representation

Pl=m, fg*x’(g)T(g)du(g). (20

Here x'(g) is the character of the group elememtin the
representatiom’ anddu(g) is the group measur®]. For
finite groups this integral is replaced with the sum.
Using the fact that
rank B") =rank B"), (22)
whereB"=P'B, we conclude(assuming there are no acci-

dental degeneracigthat the controllability condition is sat-
isfied whenever

M =max m,
r

(22

andm, of M columns ofB" are linearly independent, i.e.,
form a basis in the eigenspaté (columns ofB" spanL")

for everyr. Therefore, the minimal number of independent

control parameterd ,,;,, is equal to the dimensionality, of
the largest irreducible representatidoh present in the de-
composition of the representatidnof the groupG* in the
state spac&N.

Regarding the control matri8 as a row ofM vectors
bw),

B=(b; b, --- (23

A
1 A
1 A

A= (29

generates the linearly independent set of basis vectors that
spansR3, requiring just one control vectd.

Finally, we should note that symmetry does not always
make the Jacobian degenerate and the nondegenerate case
can be handled in the same way as the one with no symme-
tries. Neither does the degeneracy by itself imply that multi-
parameter control is required. Even rif>0 for somer
=r’ (there is a degeneragybuts,=m,=1 for everyr (the
degeneracy is accidental and the Jordan blagk is not
block diagonalizablg one control parameter is indeed suffi-
cient to make the system controllable.

IV. CONTINUOUS-TIME SYSTEMS
AND PERIODIC ORBITS

The obtained results hold for continuous-time systems
and can be easily generalized to periodic trajectories. We
should first observe that a periodic trajectory of periochn
be treated as a fixed point solution of the superposition of
maps. The equatiom* =F"(z*,p*) has 7 solutions corre-
sponding to the points of the periodic orbit , k
=1,...,7.

Next we define the time-dependent single-step Jacobian

IF(ZE ,p*)
k_ o ke

Ajj oz, (26)
and the control matrix

o IFi(Z P

ij ap, (27)

The controllability condition(5) can be extended to time-

we see that the control scheme yielding a controllable systerependent orbits by requiring that ran,) =N, whereC,

is obtained by choosing the vectdss such thatm, of the
projectionsP"b; would be linearly independent for every

=(BABr_1" " -Ax - Ar_n+2Brk_n+1) IS a generalization
of the controllability matrix, for everk. requiring that the

If accidental degeneracies are present, symmetry propepairs (A, ,B,) be controllable for everk.

ties only give a lower bound on the number of required con-

Now suppose that the symmetry of the stafeis de-

trol parameters and one should look at the Jordan blockqriped by the grouft, such thatH,C G. We can then write
structure of the Jacobian to determine the controllability us- B

ing the more general conditiori48) and (17). It is easy to

see intuitively why the number of control parameters is de-

termined by the number of the Jordan blosksand not the

multiplicity n, if we look at the Jacobian already reduced to

the Jordan form. For instance,

h(zg, ) =h(F(Z)=F((Z))=F(z)=7,, (28
for everyh e H, or, consequently,
HiCH,C---CH,.CH,, (29
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i.e., the symmetry group of all the states of the trajectory iswhile the matrixD reflects the symmetries of the reference
the same and can be determined ugihgvith an arbitraryk:  statez*:
H= Hk i

This in turn means thag* too is unique for any given T(h)D=DT(h) VhekX, (36)
periodic trajectory, as is the representatibnit is therefore . _ _ .
enough to know the symmetry properties of an arbitraryand since the Jacobiak only commutes with mat_rlces that
point of the periodic trajectory in order to establish the re-commute with bothC andD, G* should be a maximal sub-
quirements on the control scheme similarly to the time-group ofG and.

independent case. Deriving the restrictions on the control matr& is the
Finally, consider a continuous-time evolution equation. Itnext step. Once the groupf is determined, we construct its
can generally be written as N-dimensional representation and decompose it into the

sum of the irreducible representations qf,C For instance,

z(t)=F(z(t),p), (30 a zigzag state giveg* =C,,, with n=N/2 andM =mz=2; a

space-period- not reflection-invariant state corresponds to
Linearization of Eq.(30) around the steady sta#®, simi- G*=C, with n=N/s andM=m;=1, etc.
larly to the discrete-time case, yields In particular a uniform reference state h@s=Cy, and

Jx(t)=Ax(t)+Bu(t) (31) T=TloT*eT?®...@TN2*3 (37

and we again deno@* as the group of all actions commut- where each of the representatidfscorresponds to the sub-
ing with the action of the Jacobian. The controllability of the spacel*, generated by the Fourier modes)(=exp(=ikl)
pair (A,B) ensures that all eigenvalues Af~BK can be with wave vectors &|k|<w, T! to k=0, andT* to k
chosen to be negative, so that the steady state becomesr. SinceT® is presentM =ms=2. Therefore, in order to
stable. As a result, the control matri& should satisfy the control an unstable uniform steady state of the coupled map
same conditions as those obtained for the discrete-time cadettice we need at least two control parameféiis This is the
reflection of the parity symmetry of the mod&?2).
V. COUPLED MAP LATTICE ChoosingB=(b; b,) as a two-column matrix and defin-

ing the Fourier coefficients
Next we apply the general results to the case of the

coupled map lattice defined by the evolution equation b¥=e-b;, (38)

7z '=ef(zi_)+(1-20)f(z)+ef(z,1), (32 we write the conditions on the vectois, and b,: b
#0, b5#0, andbX+ Db} for 0<|k|<, and eithetbX+#0 or

with i=1,2,... N and the periodic boundary conditions, bl§¢0 for k=0,. For example, the choice

i.e.,zl, =2, imposed. The local map functidi{x) can be
chosen arbitrarily. o _ Bij — 5]_ 1551+ 5]_ 58 141 (39

The symmetry grou of the lattice includes translations T o
by an integer number of lattice sitgseriodic boundary con-  yields a controllable system for any<l <N. It corresponds
ditions make the group finiteand reflections about any site. o applying feedback locally through the perturbations of the
The corresponding point group isyg. It has a total of \gyiaples at the adjacent sitesand |+ 1. In fact, it can be
N/2+3 nonequivalent irreducible representations the  easijly seen that this control arrangement makes unstable pe-
first four are one-dimensionat, = m,=ms=m,=1, while  (jodic orbit with arbitrary symmetry controllable.

the restN/2—1 are two-dimensionatn, =2, r=5. _ All the examples above show that the symmetry is re-
Linearizing Eq.(32) about the steady sta#, we obtain  guced upon the linearization of the evolution equation. How-
Eq. (2) with A=CD, where ever, the symmetry can increase as well. It is quite easy to
construct a coupled map lattice system whose symmetry will

Cij=(1-2€)6 j+e(5ij-11 8 j+1) (33 increase for certain highly symmetric reference states. We

) ) o will see anothefcontinuous-timg example just below.
(with &, ;., extended to comply with periodic boundary con-

ditions) and VI. PARTICLE IN A SYMMETRIC POTENTIAL
Dij=f"(z")&,;. (34 The motion of a particle in a symmetric potential
This partition of the Jacobian into the product of two matri- maZr=—VV(r) (40)

ces explicitly shows how the symmetry grogp depends on

the symmetries of the nonlinear evolution equation and th&erves as another example of the relation between the groups
controlled statez*. The matrix C has all the symmetries G andG*. Suppose that the potentd(r) possesses the cu-
imposed by the chosen intersite couplings of the nonlineabic symmetry[group OZSQ(3)], but is not spherically sym-
model: metric, for instance,

T(g)C=CT(g) Vgeg, (35 V(r)=V,coshkx)coshky)coshkz). (42
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Linearizing the evolution equatidd0) about the equilibrium  whereb,,b,,b; could be chosen as any three linearly inde-
point r* =0 we obtain pendent vectors ik,

r 0 1\/r
vl w2 0/\v

where w?=—Vok?/m and 1 is a 3x3 unit matrix. If

o, , 42) VIl. CONCLUSIONS

Summing up, we conclude that the symmetry properties
of the system should be understood prior to constructing a
UNRALLI _ ! " control scheme. The number of control parameters required
V<0 the equilibrium is unstable. Equatidd2) is spheri- o control a given state of the system can often be determined
cally symmetric,G* =SO(3), andthereforeGCG*, i.e., the  ysing only symmetry considerations, without knowing any-
symmetry of the linearized equation is higher than the symthing else about the actual evolution equations. The knowl-
metry of the original nonlinear evolution equation. edge of the evolution equatior(at least in the linearized

Next we notice that the representatidnof G* in the  form), however allows one to choose the control parameters
six-dimensional spacfr,v} can be decomposed into a sum (through the matrix8) systematically, avoiding a trial-and-
of two three-dimensional irreducible representations oferror search. The general idea can be stated briefly: The con-
SO(3) (vector representatiojis trollability condition requires the control arrangement able to

break the symmetry of the evolution equation completely.
T=T'&T} m;=3. (43 Care should be taken if there are accidental degeneracies.
The knowledge of the multiplicity of the degenerate eigen-
This indicates that in order to control the unstable stdte yalue_s becomes less useful and typically leads to an overes-
=v* =0 one needs at least three independent control pararﬁ'—mam?n of the numper of control parameters requ[red. This
eters. case is more compllcated' and .addltlonal mformat'lon about

Probably the simplest way to control such a system is tc;he structure of the_ Jacobian might be necessary in order to
readjust the potentidapplying external fields, shifting sup- determine the minimal nL_meer of control parameters and
port point, etc. based on the instantaneous values of thebonstruct the control matrix.
positionr and velocityv of the particle. This corresponds to

picking the control matrix in the form ACKNOWLEDGMENTS
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