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Controlling physical systems with symmetries

R. O. Grigoriev and M. C. Cross
Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125

~Received 22 July 1997!

Symmetry properties of the evolution equation and the state to be controlled are shown to determine the
basic features of the linear control of unstable orbits. In particular the selection of control parameters and their
minimal number are determined by the irreducible representations of the symmetry group of the linearization
about the orbit to be controlled. We use the general results to demonstrate the effect of symmetry on the control
of two sample physical systems: a coupled map lattice and a particle in a symmetric potential.
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PACS number~s!: 05.45.1b, 07.05.Dz, 11.30.Na
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I. INTRODUCTION

Despite the recent wave of interest towards controll
chaotic dynamics@1,2#, an interesting and important questio
of controlling systems with symmetries received surprisin
little attention in the physics literature. The importance
symmetries in controlling, for instance, spatiotemporal ch
is evident since the systems typically show rotational a
translational symmetries. Although the presence of sym
tries usually significantly simplifies the analysis of syste
dynamics, it also makes control schemes more complica
due to the inherent degeneracies of the evolution opera
In fact, the presence of symmetries, explicit or implic
makes a number of single-control-parameter methods
@1,3#, calling for multiparameter control@4–7#.

In order to see how these restrictions arise, let us cons
a general discrete-time system~the arguments for
continuous-time systems are very similar!, whose evolution
is described by the mapF: RN3RM→RN,

zt115F~zt,p!, ~1!

where z is an N-dimensional state vector andp is an
M -dimensional parameter vector. Linearizing about
steady-state solution ofz* 5F(z* ,p* ) and denotingxt5zt

2z* andut5pt2p* , we readily obtain

xt115Axt1But, ~2!

whereAi j 5]Fi(z* ,p* )/]zj is the Jacobian of the transfo
mation andBi j 5]Fi(z* ,p* )/]pj is the control matrix.

If the steady statez* is unstable, it can be stabilized by a
appropriate feedback through the time-dependent con
perturbationut if the matricesA andB satisfy certain condi-
tions. We will understand the design of the control scheme
an appropriate choice of the control matrixB. We will see
below that the conditions affecting this choice can be ea
obtained from the symmetry properties of the system and
controlled state.

II. STABILIZABLE VS CONTROLLABLE SYSTEMS

Assuming that the feedback is linear in the deviation fro
the steady statez* , we can write
571063-651X/98/57~2!/1550~5!/$15.00
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ut52Kxt ~3!

and one obtains the linearized evolution equation in the fo

xt115~A2BK!xt. ~4!

The matrix A85A2BK has stability properties differen
from the stability properties of the matrixA. This can be
exploited to make the steady statez* ~the matrixA2BK)
stable under control.

The dynamical system~2! or the pair (A,B) is said to be
stabilizableif there exists a state feedback~3! such that the
system~4! is stable. Stabilizability is a property that ofte
depends sensitively on the values of the control parame
p* .

In the majority of practical situations it is preferable
have an adaptive control that would stabilize a given ste
statez* (p* ) for arbitrary values of the system paramete
This is especially important if one is to track the trajecto
z* as p* changes or use the same control arrangemen
stabilize different steady~or even periodic! states.

Such a control scheme is obtained if the more restrict
condition ofcontrollability is imposed on the matricesA and
B. The dynamical system~2! or the pair (A,B) is said to be
controllable if the eigenvalues of the matrixA2BK can be
freely assigned~with complex ones in conjugate pairs!,
which is equivalent~see Theorem 5.13 in Ref.@8#! to requir-
ing that:

rank~C!5N, ~5!

whereC5(B AB A2B ••• AN21B) is called thecontrolla-
bility matrix. Relation ~5! was introduced into the physic
literature from linear systems theory by Romeiraset al. @1#
as a simple but practical test of the controllability.

In order to better understand the restrictions imposed
the symmetry, it is beneficial to look at the controllabili
condition written in the form~5! from the geometrical point
of view assumingM51 andB5b. Suppose we let the sys
tem evolve under control fort steps from the initial statext.
The final state will be given by

xt1t5Atxt1 (
m50

t21

At212mbut1m. ~6!
1550 © 1998 The American Physical Society
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57 1551CONTROLLING PHYSICAL SYSTEMS WITH SYMMETRIES
The controllability in this context is equivalent to the vecto

fm5At212mb, m50, . . . ,t21 ~7!

spanning the state space fort5N, so that any initial state
can be mapped to any final state int time steps by an ap
propriate choice of the ‘‘coordinates’’ut1m of the difference
xt1t2Atxt.

If the matrix A is nondegenerate~has a nondegenerat
spectrum!, one can always find a vectorb such that the re-
sulting set~7! forms a basis. However, ifA is degenerate
~which is a usual consequence of symmetry!, there will exist
an invariant subspaceLr,RN, with the dimension dim(Lr)
.1, where the dynamics of the system cannot be contro
with just one control parameter~see Ref.@1# for an example
of such a situation!.

If the system dynamics inLr happens to be stable, th
system can still be stabilized similarly to the nondegene
case, but we have to ensure controllability in case the
namics in this subspace is unstable. This can be achieve
increasing the number of control parametersM , which ex-
tends the set~7!, until it spans every unstable invariant su
space ofRN. This would lead one to assume thatM should
be defined by the dimension of the largest invariant subsp
or equivalently, the highest degeneracy of the Jacobian
trix A. We will see, however, that various kinds of dege
eracy have a somewhat different effect on the controllabi
of the system.

III. THE NUMBER AND SELECTION OF PARAMETERS

Let us assume that the evolution equation~1! possesses a
symmetry described by a symmetry groupG, i.e., the mapF
commutes with all group actions

F„g~z!,p…5g„F~z,p!… ;gPG ~8!

or in other words, the functionF(z,p) is G equivariant. The
symmetry of the linearized equation~2! in the absence o
control (u50) is in general different from~although closely
related to! the symmetry of the full nonlinear equation~1!.
We will call the respective symmetry groupG* . It generates
the matrix representationT in the state spaceRN:

@g~x!# i5@T~g!x# i5T~g! i j xj . ~9!

Due to the symmetry, all matricesT(g) commute with the
Jacobian

T~g!A5AT~g! ;gPG* . ~10!

G* depends on bothG and the reference statez* or, to be
exact, its symmetry group, which we denoteH:

h~z* !5z* ;hPH. ~11!

The symmetry of the evolution equation is reduced up
linearization, if the reference state has low symmetry, a
thenG* becomes one of the subgroups ofG. On the other
hand,G* might be equal toG or even includeG as a sub-
group for highly symmetric reference states, with the app
ent symmetry increased by linearization.
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DecomposingT into a sum of irreducible representation
Tr of the group G* with respective dimensionalitie
mr , r 51, . . . ,l we obtain

T5(
r %

Tr , N5(
r

mr . ~12!

According to the standard group-theoretic analysis@9#, the
JacobianA will have eigenvaluesl r with multiplicities nr
>mr , corresponding to the dimensions of the irreducib
representationsTr contained in the decomposition ofT. If
mr.1 for somer , the Jacobian becomes degenerate, wh
causes certain control methods to fail~see, for example, Ref
@3#!.

Next we use the result of linear systems theory based
the Jordan decomposition of the Jacobian matrix

L5SAS215S L1

L2

�

L l

D , ~13!

where the Jordan superblock

L r5S L r1

L r2

�

L rsr

D ~14!

corresponding to the eigenvaluel r has dimensionnr and
consists ofsr Jordan blocks

L ri 5S l r

1 l r

��

1 l r

1 l r

D . ~15!

Since the controllability is invariant with respect to coo
dinate transformations~Theorem 5.17 in Ref.@8#!, condition
~5! is satisfied for the pair (A,B) if and only if it is satisfied
for the pair (L,B̂), whereB̂5SB is the transformed contro
matrix.

If B̂ is partitioned according to the block structure ofL,

B̂5S B̂1

B̂2

A

B̂l

D , B̂r5S B̂r1

B̂r2

A

B̂rsr

D , B̂ri 5S b̂1
ri

b̂2
ri

A

b̂nri

r i

D , ~16!

the controllability condition for the pair (L,B̂) is reduced to
the controllability conditions for each pair (L r ,B̂r), which,
in turn, is satisfied~Theorem 5.18 in Ref.@8#! if and only if
for eachr the set ofsr M -dimensional row vectors

b̂1
r1 ,b̂1

r2 , . . . ,b̂1
rsr ~17!
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is linearly independent. This in turn can be achieved if a
only if M>sr for every r . Hence the minimal number o
control parameters should equal the maximal number of
dan blocks contained in any one superblock

Mmin5max
r

sr . ~18!

In general, the system under consideration is not Ham
tonian and therefore its Jacobian matrixA is not Hermitian
and hence nondiagonalizable. Therefore, we havenr>sr
>mr . However, in the absence of accidental degenera
nr5sr5mr for every r and the condition~17! is equivalent
to

rank~B̂r !5mr . ~19!

The calculation of the transformationS can be avoided for
compact groupsG* by using the projection operatorPr on
the subspaceLr,RN, which transforms according to ther th
irreducible representation

Pr5mrE
G*

x r~g!T~g!dm~g!. ~20!

Here x r(g) is the character of the group elementg in the
representationTr and dm(g) is the group measure@9#. For
finite groups this integral is replaced with the sum.

Using the fact that

rank~ B̃r !5rank~B̂r !, ~21!

where B̃r5PrB, we conclude~assuming there are no acc
dental degeneracies! that the controllability condition is sat
isfied whenever

M>max
r

mr ~22!

and mr of M columns ofB̃r are linearly independent, i.e
form a basis in the eigenspaceLr ~columns ofB̃r spanLr)
for every r . Therefore, the minimal number of independe
control parametersMmin is equal to the dimensionalitymr of
the largest irreducible representationTr present in the de-
composition of the representationT of the groupG* in the
state spaceRN.

Regarding the control matrixB as a row ofM vectors

B5~b1 b2 ••• bM !, ~23!

we see that the control scheme yielding a controllable sys
is obtained by choosing the vectorsbi such thatmr of the
projectionsPrbi would be linearly independent for everyr .

If accidental degeneracies are present, symmetry pro
ties only give a lower bound on the number of required c
trol parameters and one should look at the Jordan bl
structure of the Jacobian to determine the controllability
ing the more general conditions~18! and ~17!. It is easy to
see intuitively why the number of control parameters is
termined by the number of the Jordan blockssr and not the
multiplicity nr if we look at the Jacobian already reduced
the Jordan form. For instance,
d
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A15S l

l

l
D ~24!

generates the set of three linearly dependent vectorf0

5b,f15lb, andf25l2b @compare to Eq.~7!#, that span the
one-dimensional subspace ofR3 for any choice ofb. As a
result, three linearly independent vectorsb1 ,b2 ,b3 are nec-
essary to control the system.

On the contrary, the Jacobian

A25S l

1 l

1 l
D ~25!

generates the linearly independent set of basis vectors
spansR3, requiring just one control vectorb.

Finally, we should note that symmetry does not alwa
make the Jacobian degenerate and the nondegenerate
can be handled in the same way as the one with no sym
tries. Neither does the degeneracy by itself imply that mu
parameter control is required. Even ifnr.0 for some r
5r 8 ~there is a degeneracy!, but sr5mr51 for everyr ~the
degeneracy is accidental and the Jordan blockL r 8 is not
block diagonalizable!, one control parameter is indeed suf
cient to make the system controllable.

IV. CONTINUOUS-TIME SYSTEMS
AND PERIODIC ORBITS

The obtained results hold for continuous-time syste
and can be easily generalized to periodic trajectories.
should first observe that a periodic trajectory of periodt can
be treated as a fixed point solution of the superposition ot
maps. The equationz* 5Ft(z* ,p* ) has t solutions corre-
sponding to the points of the periodic orbitzk* , k
51, . . . ,t.

Next we define the time-dependent single-step Jacobi

Ai j
k 5

]Fi~zk* ,p* !

]zj
~26!

and the control matrix

Bi j
k 5

]Fi~zk* ,p* !

]pj
. ~27!

The controllability condition~5! can be extended to time
dependent orbits by requiring that rank (Ck)5N, whereCk
5(BkAkBk21•••Ak•••Ak2N12Bk2N11) is a generalization
of the controllability matrix, for everyk. requiring that the
pairs (Ak ,Bk) be controllable for everyk.

Now suppose that the symmetry of the statezk* is de-
scribed by the groupHk such thatHk#G. We can then write

h~zk11* !5h„F~zk* !…5F„h~zk* !…5F~zk* !5zk11* ~28!

for everyhPHk or, consequently,

H1#H2#•••#Ht#H1 , ~29!
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57 1553CONTROLLING PHYSICAL SYSTEMS WITH SYMMETRIES
i.e., the symmetry group of all the states of the trajectory
the same and can be determined usingzk* with an arbitraryk:
H5Hk .

This in turn means thatG* too is unique for any given
periodic trajectory, as is the representationT. It is therefore
enough to know the symmetry properties of an arbitr
point of the periodic trajectory in order to establish the
quirements on the control scheme similarly to the tim
independent case.

Finally, consider a continuous-time evolution equation
can generally be written as

] tz~ t !5F„z~ t !,p…, ~30!

Linearization of Eq.~30! around the steady statez* , simi-
larly to the discrete-time case, yields

] tx~ t !5Ax~ t !1Bu~ t ! ~31!

and we again denoteG* as the group of all actions commu
ing with the action of the Jacobian. The controllability of th
pair (A,B) ensures that all eigenvalues ofA2BK can be
chosen to be negative, so that the steady state beco
stable. As a result, the control matrixB should satisfy the
same conditions as those obtained for the discrete-time c

V. COUPLED MAP LATTICE

Next we apply the general results to the case of
coupled map lattice defined by the evolution equation

zi
t115e f ~zi 21

t !1~122e! f ~zi
t!1e f ~zi 11

t !, ~32!

with i 51,2, . . . ,N and the periodic boundary condition
i.e., zi 1N

t 5zi
t , imposed. The local map functionf (x) can be

chosen arbitrarily.
The symmetry groupG of the lattice includes translation

by an integer number of lattice sites~periodic boundary con-
ditions make the group finite! and reflections about any site
The corresponding point group is CNv . It has a total of
N/213 nonequivalent irreducible representationsTr : the
first four are one-dimensional,m15m25m35m451, while
the restN/221 are two-dimensional,mr52, r>5.

Linearizing Eq.~32! about the steady statez* , we obtain
Eq. ~2! with A5CD, where

Ci j 5~122e!d i , j1e~d i , j 211d i , j 11! ~33!

~with d i , j 61 extended to comply with periodic boundary co
ditions! and

Di j 5 f 8~zi* !d i , j . ~34!

This partition of the Jacobian into the product of two mat
ces explicitly shows how the symmetry groupG* depends on
the symmetries of the nonlinear evolution equation and
controlled statez* . The matrix C has all the symmetries
imposed by the chosen intersite couplings of the nonlin
model:

T~g!C5CT~g! ;gPG, ~35!
s
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while the matrixD reflects the symmetries of the referen
statez* :

T~h!D5DT~h! ;hPH, ~36!

and since the JacobianA only commutes with matrices tha
commute with bothC andD, G* should be a maximal sub
group ofG andH.

Deriving the restrictions on the control matrixB is the
next step. Once the groupG* is determined, we construct it
N-dimensional representationT and decompose it into the
sum of the irreducible representations of CNv . For instance,
a zigzag state givesG* 5Cnv with n5N/2 andM5m552; a
space-period-s not reflection-invariant state corresponds
G* 5Cn with n5N/s andM5m151, etc.

In particular a uniform reference state hasG* 5CNv and

T5T1
% T4

% T5
% ••• % TN/213, ~37!

where each of the representationsT5 corresponds to the sub
spaceLk, generated by the Fourier modes (ek) l5exp(6ikl)
with wave vectors 0,uku,p, T1 to k50, and T4 to k
5p. SinceT5 is present,M5m552. Therefore, in order to
control an unstable uniform steady state of the coupled m
lattice we need at least two control parameters@6#. This is the
reflection of the parity symmetry of the model~32!.

ChoosingB5(b1 b2) as a two-column matrix and defin
ing the Fourier coefficients

bi
k5ek

•bi , ~38!

we write the conditions on the vectorsb1 and b2: b1
k

Þ0, b2
kÞ0, andb1

kÞb2
k for 0,uku,p, and eitherb1

kÞ0 or
b2

kÞ0 for k50,p. For example, the choice

Bi j 5d j ,1d i ,l1d j ,2d i ,l 11 ~39!

yields a controllable system for any 1< l<N. It corresponds
to applying feedback locally through the perturbations of
variables at the adjacent sitesl and l 11. In fact, it can be
easily seen that this control arrangement makes unstable
riodic orbit with arbitrary symmetry controllable.

All the examples above show that the symmetry is
duced upon the linearization of the evolution equation. Ho
ever, the symmetry can increase as well. It is quite eas
construct a coupled map lattice system whose symmetry
increase for certain highly symmetric reference states.
will see another~continuous-time! example just below.

VI. PARTICLE IN A SYMMETRIC POTENTIAL

The motion of a particle in a symmetric potential

m] t
2r52“V~r ! ~40!

serves as another example of the relation between the gr
G andG* . Suppose that the potentialV(r ) possesses the cu
bic symmetry@group O,SO~3!#, but is not spherically sym-
metric, for instance,

V~r !5V0cosh~kx!cosh~ky!cosh~kz!. ~41!
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Linearizing the evolution equation~40! about the equilibrium
point r* 50 we obtain

] tS r

vD 5S 0 1

v21 0D S r

vD , ~42!

where v252V0k2/m and 1 is a 333 unit matrix. If
V0,0 the equilibrium is unstable. Equation~42! is spheri-
cally symmetric,G* 5SO(3), andthereforeG,G* , i.e., the
symmetry of the linearized equation is higher than the sy
metry of the original nonlinear evolution equation.

Next we notice that the representationT of G* in the
six-dimensional space$r ,v% can be decomposed into a su
of two three-dimensional irreducible representations
SO(3) ~vector representations!:

T5T1
% T1, m153. ~43!

This indicates that in order to control the unstable stater*
5v* 50 one needs at least three independent control par
eters.

Probably the simplest way to control such a system is
readjust the potential~applying external fields, shifting sup
port point, etc.! based on the instantaneous values of
positionr and velocityv of the particle. This corresponds t
picking the control matrix in the form

B5S 0 0 0

b1 b2 b3
D , ~44!
s
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whereb1 ,b2 ,b3 could be chosen as any three linearly ind
pendent vectors inR3.

VII. CONCLUSIONS

Summing up, we conclude that the symmetry propert
of the system should be understood prior to constructin
control scheme. The number of control parameters requ
to control a given state of the system can often be determ
using only symmetry considerations, without knowing an
thing else about the actual evolution equations. The kno
edge of the evolution equations~at least in the linearized
form!, however allows one to choose the control parame
~through the matrixB) systematically, avoiding a trial-and
error search. The general idea can be stated briefly: The
trollability condition requires the control arrangement able
break the symmetry of the evolution equation completely

Care should be taken if there are accidental degenera
The knowledge of the multiplicity of the degenerate eige
values becomes less useful and typically leads to an ove
timation of the number of control parameters required. T
case is more complicated and additional information ab
the structure of the Jacobian might be necessary in orde
determine the minimal number of control parameters a
construct the control matrix.
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